scholarly journals Diurnal Patterns of Rainfall in Northwestern South America. Part II: Model Simulations

2003 ◽  
Vol 131 (5) ◽  
pp. 813-829 ◽  
Author(s):  
Thomas T. Warner ◽  
Brian E. Mapes ◽  
Mei Xu
2008 ◽  
Vol 33 (7-8) ◽  
pp. 893-916 ◽  
Author(s):  
Rodrigo J. Bombardi ◽  
Leila M. V. Carvalho

2003 ◽  
Vol 131 (5) ◽  
pp. 799-812 ◽  
Author(s):  
Brian E. Mapes ◽  
Thomas T. Warner ◽  
Mei Xu ◽  
Andrew J. Negri

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1633
Author(s):  
Andrés Yarce Botero ◽  
Santiago Lopez-Restrepo ◽  
Nicolás Pinel Peláez ◽  
Olga L. Quintero ◽  
Arjo Segers ◽  
...  

In this work, we present the development of a 4D-Ensemble-Variational (4DEnVar) data assimilation technique to estimate NOx top-down emissions using the regional chemical transport model LOTOS-EUROS with the NO2 observations from the TROPOspheric Monitoring Instrument (TROPOMI). The assimilation was performed for a domain in the northwest of South America centered over Colombia, and includes regions in Panama, Venezuela and Ecuador. In the 4DEnVar approach, the implementation of the linearized and adjoint model are avoided by generating an ensemble of model simulations and by using this ensemble to approximate the nonlinear model and observation operator. Emission correction parameters’ locations were defined for positions where the model simulations showed significant discrepancies with the satellite observations. Using the 4DEnVar data assimilation method, optimal emission parameters for the LOTOS-EUROS model were estimated, allowing for corrections in areas where ground observations are unavailable and the region’s emission inventories do not correctly reflect the current emissions activities. The analyzed 4DEnVar concentrations were compared with the ground measurements of one local air quality monitoring network and the data retrieved by the satellite instrument Ozone Monitoring Instrument (OMI). The assimilation had a low impact on NO2 surface concentrations reducing the Mean Fractional Bias from 0.45 to 0.32, primordially enhancing the spatial and temporal variations in the simulated NO2 fields.


2011 ◽  
Vol 7 (5) ◽  
pp. 2981-3022 ◽  
Author(s):  
S. Wagner ◽  
I. Fast ◽  
F. Kaspar

Abstract. Two simulations with a regional climate model are analyzed for climatic changes between the late 20th century and a pre-industrial period over central and southern South America. The model simulations have been forced with large-scale boundary data from the global simulation performed with a coupled atmosphere-ocean general circulation model. The regional simulations have been carried out on a 0.44° × 0.44° grid (approx. 50 km × 50 km horizontal resolution). The differences in the external forcings are related to a changed greenhouse gas content of the atmosphere, being higher in the present-day simulation. For validation purposes the climate model is analyzed using a five year long simulation between 1993 and 1997 forced with re-analysis data. The climate model reproduces the main climatic features reasonably well, especially when comparing model output co-located with observational station data. However, the comparison between observed and simulated climate is hampered by the sparse meteorological station network in South America. The present-day simulation is compared with the pre-industrial simulation for atmospheric fields of near-surface temperatures, precipitation, sea level pressure and zonal wind. Higher temperatures in the present-day simulation are evident over entire South America, mostly pronounced over the southern region of the Andes Mountains and the Parana basin. During southern winter the higher temperatures prevail over the entire continent, with largest differences over the central Andes Mountains and the Amazonian basin. Precipitation differences show a more heterogeneous pattern, especially over tropical regions. This might be explained by changes in convective processes acting on small scales. During southern summer wetter conditions are evident over the Amazonian and Parana basin in the present-day simulation. Precipitation increases are evident over Patagonia together with decreases to the north along the western slope of the Andes Mountains. During southern winter also a dipole pattern along the Andes Mountains with wetter conditions over the southern parts and drier conditions over the central parts is evident. An interesting feature relates to precipitation changes with changing sign within a few 10th of kilometers along the southern parts of the Andes mountain chain. This pattern can be explained by changes in large-scale circulation related to latitudinal changes of the extratropical southern hemispheric westerlies.


Tellus B ◽  
2015 ◽  
Vol 67 (1) ◽  
pp. 27884 ◽  
Author(s):  
Marcia A. Yamasoe ◽  
Bastien Sauvage ◽  
Valerie Thouret ◽  
Philippe Nédélec ◽  
Eric Le Flochmoen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document